Three-dimensional band diagram in lateral polarity junction III-nitride heterostructures
نویسندگان
چکیده
منابع مشابه
Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures
The role of spontaneous and piezoelectric polarization in III–V nitride heterostructures is investigated. Polarization effects and crystal polarity are reviewed in the context of nitride heterostructure materials and device design, and a detailed analysis of their influence in nitride heterostructure field-effect transistors is presented. The combined effects of spontaneous and piezoelectric po...
متن کاملRoom-temperature ballistic transport in III-nitride heterostructures.
Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the sh...
متن کاملEpitaxial Growth of III–Nitride/Graphene Heterostructures for Electronic Devices
Epitaxial GaN films were grown by metal organic chemical vapor deposition (MOCVD) on functionalized epitaxial graphene (EG) using a thin ( 11 nm) conformal AlN nucleation layer. Raman measurements show a graphene 2D peak at 2719 cm 1 after GaN growth. X-ray diffraction analysis reveals [0001]-oriented hexagonal GaN with (0002) peak rocking curve full width at the half maximum (FWHM) of 544 arcs...
متن کاملThree-dimensional metallic boron nitride.
Boron nitride (BN) and carbon are chemical analogues of each other and share similar structures such as one-dimensional nanotubes, two-dimensional nanosheets characterized by sp(2) bonding, and three-dimensional diamond structures characterized by sp(3) bonding. However, unlike carbon which can be metallic in one, two, and three dimensions, BN is an insulator, irrespective of its structure and ...
متن کاملEvidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures
Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optica
سال: 2019
ISSN: 2334-2536
DOI: 10.1364/optica.6.001058